Source code for libai.models.swin_transformer

# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import oneflow as flow
import oneflow.nn as nn
from flowvision.layers import trunc_normal_
from flowvision.models import to_2tuple

from libai.config.config import configurable
from libai.layers import MLP, DropPath, LayerNorm, Linear
from libai.utils import distributed as dist


def window_partition(x, window_size):
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size, H, W):
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class WindowAttention(nn.Module):
    """Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional): If True, add a learnable bias to query,key,value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(
        self,
        dim,
        window_size,
        num_heads,
        qkv_bias=True,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        fused_bias_add_dropout=False,
        layer_idx=0,
    ):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            flow.zeros(
                (2 * window_size[0] - 1) * (2 * window_size[1] - 1),
                num_heads,
                placement=dist.get_layer_placement(layer_idx),
                sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            )
        )  # 2*Wh-1 * 2*Ww-1, nH
        trunc_normal_(self.relative_position_bias_table, std=0.02)

        # get pair-wise relative position index for each token inside the window
        coords_h = flow.arange(self.window_size[0])
        coords_w = flow.arange(self.window_size[1])
        coords = flow.stack(flow.meshgrid(*[coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = flow.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] = (
            relative_coords[:, :, 0] + self.window_size[0] - 1
        )  # shift to start from 0
        relative_coords[:, :, 1] = relative_coords[:, :, 1] + self.window_size[1] - 1
        relative_coords[:, :, 0] = relative_coords[:, :, 0] * (2 * self.window_size[1] - 1)
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer(
            "relative_position_index",
            relative_position_index.to_global(
                placement=dist.get_layer_placement(layer_idx),
                sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            ),
        )

        self.qkv = Linear(dim, dim * 3, bias=qkv_bias, layer_idx=layer_idx)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = Linear(dim, dim, layer_idx=layer_idx)
        self.proj_drop = nn.Dropout(proj_drop)
        self.softmax = nn.Softmax(dim=-1)
        self.fused_bias_add_dropout = fused_bias_add_dropout
        self.p = proj_drop

    def forward(self, x, mask):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B_, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        # attn = flow.matmul(q, k.transpose(-2, -1))
        attn = flow.matmul(q, k, transpose_b=True)

        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)
        ].view(
            self.window_size[0] * self.window_size[1],
            self.window_size[0] * self.window_size[1],
            -1,
        )  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1
        ).contiguous()  # nH, Wh*Ww, Wh*Ww
        unsqueeze_relative_position_bias = relative_position_bias.unsqueeze(0)
        attn = attn + unsqueeze_relative_position_bias

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = flow.matmul(attn, v).transpose(1, 2).reshape(B_, N, C)
        if self.fused_bias_add_dropout:
            x = flow._C.matmul(x, self.proj.weight, transpose_a=False, transpose_b=True)
            x = flow._C.fused_bias_add_dropout(x, self.proj.bias, p=self.p, axis=2)
        else:
            x = self.proj(x)
            x = self.proj_drop(x)
        return x


class SwinTransformerBlock(nn.Module):
    """Swin Transformer Block.
    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: libai.layers.LayerNorm
    """

    def __init__(
        self,
        dim,
        input_resolution,
        num_heads,
        window_size=7,
        shift_size=0,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=LayerNorm,
        layer_idx=0,
    ):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        self.layer_idx = layer_idx
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim, layer_idx=layer_idx)
        self.attn = WindowAttention(
            dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            fused_bias_add_dropout=True,
            layer_idx=layer_idx,
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim, layer_idx=layer_idx)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = MLP(
            hidden_size=dim,
            ffn_hidden_size=mlp_hidden_dim,
            output_dropout_prob=drop,
            bias_gelu_fusion=True,
            bias_dropout_fusion=True,
            layer_idx=layer_idx,
        )

        if self.shift_size > 0:
            # calculate attention mask for SW-MSA
            H, W = self.input_resolution
            img_mask = flow.zeros((1, H, W, 1))  # 1 H W 1
            h_slices = (
                slice(0, -self.window_size),
                slice(-self.window_size, -self.shift_size),
                slice(-self.shift_size, None),
            )
            w_slices = (
                slice(0, -self.window_size),
                slice(-self.window_size, -self.shift_size),
                slice(-self.shift_size, None),
            )
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt = cnt + 1

            mask_windows = window_partition(
                img_mask, self.window_size
            )  # nW, window_size, window_size, 1
            mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
                attn_mask == 0, float(0.0)
            )
            attn_mask = attn_mask.to_global(
                placement=dist.get_layer_placement(layer_idx),
                sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
            )
        else:
            attn_mask = None

        self.register_buffer("attn_mask", attn_mask)

    def forward(self, x):
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = flow.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(
            shifted_x, self.window_size
        )  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(
            -1, self.window_size * self.window_size, C
        )  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, self.attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = flow.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class PatchMerging(nn.Module):
    """Patch Merging Layer.
    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: libai.layers.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=LayerNorm, layer_idx=0):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = Linear(4 * dim, 2 * dim, bias=False, layer_idx=layer_idx)
        self.norm = norm_layer(4 * dim, layer_idx=layer_idx)
        self.layer_idx = layer_idx

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = flow.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x


class PatchEmbed(nn.Module):
    """Image to Patch Embedding
    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(
        self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, layer_idx=0
    ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [
            img_size[0] // patch_size[0],
            img_size[1] // patch_size[1],
        ]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
        ).to_global(
            placement=dist.get_layer_placement(layer_idx),
            sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]),
        )
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim, layer_idx=layer_idx)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert (
            H == self.img_size[0] and W == self.img_size[1]
        ), f"Input image size ({H}*{W}) doesn't match model({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x


class BasicLayer(nn.Module):
    """A basic Swin Transformer layer for one stage.
    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: libai.layers.LayerNorm
        downsample (nn.Module | None, optional): Downsample at the end of the layer. Default: None
    """

    def __init__(
        self,
        dim,
        input_resolution,
        depth,
        num_heads,
        window_size,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        norm_layer=LayerNorm,
        downsample=None,
        layer_id_offset=0,
    ):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.layer_id_offset = layer_id_offset
        # build blocks
        self.blocks = nn.ModuleList(
            [
                SwinTransformerBlock(
                    dim=dim,
                    input_resolution=input_resolution,
                    num_heads=num_heads,
                    window_size=window_size,
                    shift_size=0 if (i % 2 == 0) else window_size // 2,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop,
                    attn_drop=attn_drop,
                    drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                    norm_layer=norm_layer,
                    layer_idx=layer_id_offset + i,
                )
                for i in range(depth)
            ]
        )

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(
                input_resolution,
                dim=dim,
                norm_layer=norm_layer,
                layer_idx=layer_id_offset + depth - 1,
            )
        else:
            self.downsample = None

    def forward(self, x):
        layer_idx = self.layer_id_offset
        for i in range(len(self.blocks)):
            x = x.to_global(placement=dist.get_layer_placement(layer_idx))
            x = self.blocks[i](x)
            layer_idx += 1
        if self.downsample is not None:
            x = self.downsample(x)
        return x


[docs]class SwinTransformer(nn.Module): """Swin Transformer in LiBai. LiBai implement of: `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/pdf/2103.14030>`_ Args: img_size (int, tuple(int)): Input image size. Default 224 patch_size (int, tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: libai.layers.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True loss_func (callable, optional): Loss function for computing the total loss between logits and labels """ @configurable def __init__( self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, norm_layer=LayerNorm, ape=False, patch_norm=True, loss_func=None, **kwargs, ): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, layer_idx=0, ) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter( flow.zeros(1, num_patches, embed_dim), placement=dist.get_layer_placement(0), sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]), ) trunc_normal_(self.absolute_pos_embed, std=0.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [ x.item() for x in flow.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() layer_id_offset = 0 for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2 ** i_layer), input_resolution=( patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer), ), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, layer_id_offset=layer_id_offset, ) layer_id_offset += depths[i_layer] self.layers.append(layer) self.norm = norm_layer(self.num_features, layer_idx=-1) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = ( Linear(self.num_features, num_classes, layer_idx=-1) if num_classes > 0 else nn.Identity() ) # Loss func self.loss_func = nn.CrossEntropyLoss() if loss_func is None else loss_func self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @classmethod def from_config(cls, cfg): return { "img_size": cfg.img_size, "patch_size": cfg.patch_size, "in_chans": cfg.in_chans, "num_classes": cfg.num_classes, "embed_dim": cfg.embed_dim, "depths": cfg.depths, "num_heads": cfg.num_heads, "window_size": cfg.window_size, "mlp_ratio": cfg.mlp_ratio, "qkv_bias": cfg.qkv_bias, "qk_scale": cfg.qk_scale, "drop_rate": cfg.drop_rate, "drop_path_rate": cfg.drop_path_rate, "ape": cfg.ape, "patch_norm": cfg.patch_norm, "loss_func": cfg.loss_func, } def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = flow.flatten(x, 1) return x
[docs] def forward(self, images, labels=None): """ Args: images (flow.Tensor): training samples. labels (flow.LongTensor, optional): training targets Returns: dict: A dict containing :code:`loss_value` or :code:`logits` depending on training or evaluation mode. :code:`{"losses": loss_value}` when training, :code:`{"prediction_scores": logits}` when evaluating. """ x = self.forward_features(images) x = self.head(x) if labels is not None and self.training: losses = self.loss_func(x, labels) return {"losses": losses} else: return {"prediction_scores": x}
@staticmethod def set_pipeline_stage_id(model): dist_utils = dist.get_dist_util() # Set pipeline parallelism stage_id if hasattr(model.patch_embed, "config"): # Old API in OneFlow 0.8 model.patch_embed.config.set_stage( dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0) ) model.pos_drop.config.set_stage( dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0) ) for module_block in model.modules(): if isinstance(module_block.origin, SwinTransformerBlock): module_block.config.set_stage( dist_utils.get_layer_stage_id(module_block.layer_idx), dist.get_layer_placement(module_block.layer_idx), ) elif isinstance(module_block.origin, PatchMerging): module_block.config.set_stage( dist_utils.get_layer_stage_id(module_block.layer_idx), dist.get_layer_placement(module_block.layer_idx), ) model.norm.config.set_stage( dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1) ) model.head.config.set_stage( dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1) ) model.avgpool.config.set_stage( dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1) ) model.loss_func.config.set_stage( dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1) ) else: model.patch_embed.to(flow.nn.graph.GraphModule).set_stage( dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0) ) model.pos_drop.to(flow.nn.graph.GraphModule).set_stage( dist_utils.get_layer_stage_id(0), dist.get_layer_placement(0) ) for module_block in model.modules(): if isinstance(module_block.to(nn.Module), SwinTransformerBlock): module_block.to(flow.nn.graph.GraphModule).set_stage( dist_utils.get_layer_stage_id(module_block.layer_idx), dist.get_layer_placement(module_block.layer_idx), ) elif isinstance(module_block.to(nn.Module), PatchMerging): module_block.to(flow.nn.graph.GraphModule).set_stage( dist_utils.get_layer_stage_id(module_block.layer_idx), dist.get_layer_placement(module_block.layer_idx), ) model.norm.to(flow.nn.graph.GraphModule).set_stage( dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1) ) model.head.to(flow.nn.graph.GraphModule).set_stage( dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1) ) model.avgpool.to(flow.nn.graph.GraphModule).set_stage( dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1) ) model.loss_func.to(flow.nn.graph.GraphModule).set_stage( dist_utils.get_layer_stage_id(-1), dist.get_layer_placement(-1) ) @staticmethod def set_activation_checkpoint(model): for module_block in model.modules(): if hasattr(module_block, "origin"): # Old API in OneFlow 0.8 if isinstance(module_block.origin, SwinTransformerBlock): module_block.config.activation_checkpointing = True else: if isinstance(module_block.to(nn.Module), SwinTransformerBlock): module_block.to(flow.nn.graph.GraphModule).activation_checkpointing = True